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Abstract 

Probability distributions traditionally used in reliability analysis (e.g., exponential, Weibull, 

lognormal, normal, gamma and inverse Gaussian) do not always provide enough flexibility to model 

real world lifetime data.  Considered in this paper is a quadratic spline with a single free knot as a 

model of the cumulative hazard function for increasing failure rate distributions. A parsimonious 

(essentially closed form) solution with a simple numerical search is proposed for estimating spline 

parameters.  Automotive data examples are discussed as an illustration. 
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Introduction 

 

Most parametric modeling work in lifetime data analysis relates to (log-)location-scale distributions and 

some other suitable distributions such as gamma and inverse Gaussian.  Despite (or, arguably, because) 

of their parsimonious structure, these distributions do not provide enough flexibility in some real world 

data scenarios.  Models, in which the hazard function (or some transform of it) is a low-order 

polynomial, may provide a more reasonable fit to data in these situations.  Notable particular cases of 

the polynomial hazard models include the Rayleigh distribution with the linear hazard function and the 

Gompertz distribution with the log-linear hazard function. 

 

An alternative way to achieve flexibility in modeling hazard functions is to use  so-called spline 

functions, which are comprised of polynomial pieces connected at special points referred to as knots.  

Often, spline parameters need to be constrained in order to keep the hazard function non-negative.  

Rosenberg (1995) considers various spline models for hazard functions and Kooperberg et al. (1995) for 
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the logarithm of the hazard function.  Lawless (2003) discusses applications of cubic splines for a wide 

range of lifetime data. 

 

Working with automotive warranty data, we noticed that a spline of the form  
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with b1, b2, k > 0 fits quite well for many data sets exhibiting a linearly increasing hazard function.  As 

an example, in Figure 1, consider the cumulative hazard function for an automotive chassis component 

data.  It is evident from the figure that the proposed spline provides a better fit to the data than some 

common probability distributions estimated via a non-linear least square method. 
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Figure 1. Nonparametric estimate of cumulative hazard function  

versus normal, lognormal, Weibull and the quadratic spline fits. 

 

For estimation convenience, we will proceed with the respective cumulative hazard function, which 

takes the form of a quadratic spline with a single free knot: 
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where b1, b2 and k > 0 need to be estimated to best fit the nonparametric estimates of H(t) available in 

the form of (ti; yi), i = 1, … , N; 0 ≤  t1 < t 2  < … < t N . Considered in this paper is a restricted least-
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squares procedure limited to point estimation only.  (Due to considerably large sample sizes of field 

data, the respective interval estimation is of a lesser interest.) 

 

The rest of the paper is structured as follows. First, the objective function that corresponds to the sum of 

squared residuals is analyzed and decomposed into a sum of fixed cost (which is not affected by the 

values of b 1 , b 2  and k) and variable cost (which is affected by the values of b 1 , b 2  and k). Then, we 

analyze the monotonicity and convexity constraints and translate them into conditions on b1 , b 2  and k. 

The optimization is reduced to a two-stage process, where in the inner stage b 1  and b 2  are optimized 

using Lagrange multiplier rule (the closed form solution to the inner stage problem is given in a separate 

section) and in the outer stage the value of k is optimized via one dimensional grid search. In the final 

section, we consider practical examples illustrating applications examples of the proposed model. 

 

Objective Function 

Let n(k)=max{i : ti ≤  k}. In the least-squares fit, our objective is to minimize the sum of squares: 
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After algebraic transformations we obtain, 

f = ff + fv , 

where 
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is the fixed cost (independent of k, b 1 , b 2 ) and 
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is the variable cost. 

In the sequel, we analyze the problem of minimizing fv with respect to b1 and b2 for a fixed k, subject 

to the monotonicity constraints discussed in the following section. This optimization problem can be 

solved essentially in closed form, resulting in the optimal cost fmin(k), see Section 4. The function fmin is 

then minimized with respect to k via one-dimensional grid search to find an optimal value of k. The grid 

search can be replaced by a more efficient, interval sub-division algorithm (Fibonacci division or 

Golden Section), but this assumes that fmin is unimodal, which may not always be the case.  

 

Constraints 

The constraint that H(t) be monotonically non-decreasing in interval [0, k u ] (where k u  may be + ∞ ) 

translates into non-negativity condition for the derivative: 

2b 1 t ≥ 0; if t ≤ k, 

2b 1 t + 2b 2 (t-k) ≥ 0, if t>k. 

Since the derivative is a piecewise linear function in t, it is sufficient to enforce the constraint at t=0, k, 

k u  that results in 

b 1 ≥ 0, b 1 k u + b 2 (k u - k) ≥ 0, 

If the monotonicity is desired on an infinite time interval [0, + ∞ ] (i.e., k u � + ∞ ), then the constraints 

become 

b 1 ≥ 0, b 1 + b 2 ≥ 0, 

To summarize both of these cases, the constraints can be written in the form: 

b 1 ≥ 0, 1α b 1 + 2α b 2 ≥ 0, 

where 1α = k u , 2α =(k u - k) if k u < + ∞ , k u > k > 0; and 1α = 1, 2α = 1 if k u = + ∞ . 

The constraint that H(t) be convex translates into a requirement that the second derivative be non-

negative, i.e., b 1 ≥ 0, b 1 + b 2 ≥ 0. This is the same as the monotonicity requirement on the infinite time 

interval and thus can be enforced by setting k u =+ ∞ . 

 

Lagrange Multiplier Rule Based Optimization of b1 and b2 (Inner Stage) 

The problem of minimizing fv with respect to b 1  and b 2  for a fixed k subject to the constraints b1 ≥ 0, 
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1α b 1 + 2α b 2 ≥ 0 is a constrained optimization problem (in fact, it is a quadratic programming problem). 

To solve it we use the Lagrange multiplier rule. The Lagrangian function has the form 

L = λ0 fv+λ1 (-b 1 )+λ2 (-α 1 b 1 -α 2 b 2 ), 

where λ 0 , λ1 , λ 2  are Lagrange multipliers. The optimal b *
1 , b *

2  must satisfy the following conditions 

for some λ 0 ∈{0, 1}, λ 1 ≥ 0, λ 2 ≥ 0, λ 0 +λ 1 +λ 2 >0, 
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1 ) = 0, λ 2 ( 1α b *

1 + 2α b *
2 ) = 0, 

Note that 

,)2( 211423110
1

λαλβββλ −−++=
∂
∂

bb
b
L

 

.)2( 2251320
2

2
λαβββλ −++=

∂
∂

b
b
L

b  

In the sequel, we analyze in more detail different cases that these conditions generate. Each of the cases 

results in a potential candidate solution; the final solution is selected from these candidate solutions. It is 

the one that minimizes fv while satisfying the constraints b 1 ≥ 0, 1α b 1 + 2α b 2 ≥ 0. 

Case 1: λ 0 = 1; λ 1  > 0; λ 2  > 0 

In this case,  

b *
1 = 0, b *

2 = 0 

is the candidate solution. 

Case 2: λ 0 = 1; λ 1  = 0; λ 2  > 0 

In this case, α 1 b *
1 +α 2 b *

2 =0. Since α 1 > 0, b *
1 = -

1

*
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system of two linear equations in b *
2 , λ 2 : 
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These linear equations are solved for b *
2 , λ 2  and then b *
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. 



 6 

When solving this system of linear equations, it may turn out (as a rare possibility) that the determinant 

is zero (i.e., the system is singular). Although the analysis can be continued, in the actual code, we 

simply discard the candidate solution for this case. 

Case 3: 10 =λ , 01 >λ , 02 =λ  

In this case, 0*
1 =b  and the two linear equations 

,41
*
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,02 51
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2b , 0λ . Clearly, 0*

1 =b , 
2
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Case 4: 10 =λ , 01 =λ , 02 =λ  

In this case, the following two linear equations are solved for *
1b , *

2b  
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to obtain a candidate solution. 

Case 5: 00 =λ , 01 >λ , 02 >λ  

In this case, 0*
1 =b , 0*

22
*
11 =+ bb αα  implying 0*

2 =b  form the candidate solution. 

Case 6: 00 =λ , 01 =λ , 02 >λ  
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0210 >++ λλλ . This case does not provide candidate solutions. 

Case 7: 00 =λ , 01 >λ , 02 =λ  

In this case, 0
1

=
∂
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b
L

 and, hence, 01 =λ , which is not possible. This case does not provide candidate 

solutions. 

Case 8: 00 =λ , 01 =λ , 02 =λ  

This case is not possible, since 0210 >++ λλλ . 

 

Practical Examples 

We would like to first consider a fleet battery data set (Davis, 2003).  This example pertains to the 

ability of the battery to have enough power to turn over the starter motor and start the engine. Note that 
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time in service is used as the life variable. This is considered as a surrogate for engine starting cycles, 

which might have been more appropriate, but the investigating engineer did not know the number of 

times each vehicle had been started. Time in service was considered a more suitable surrogate than, 

perhaps, mileage. 

 

The cumulative hazard function estimated from data collected from a large fleet of captive vehicles is 

illustrated in Figure 2.  The quadratic spline parameter estimates are: 1b̂  =1.51·10-4, 2b̂  = 2.88·10-5,  

k̂  = 13.97.  Weibull distribution also provides a reasonable approximation for this data set, although, 

with a larger value of the cost function (the sum of residual squares) than the quadratic spline. 
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Figure 2. A fleet battery example.  

 

Another example we would like to share involves an axle seal component, for which mileage is believed 

to be a better life variable for obvious engineering reasons.  The data are obtained from a warranty 

database system.  The estimated quadratic spline ( 1b̂  = 5.65·10-12, 2b̂  =1.43·10-11,  

k̂  = 20,468) shows a better approximation to the actual data than some conventionally used probability 

distributions. 
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Figure 3.  An axle seal example.  
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